Differential Geometry in spaces of mappings using nilpotent infinitesimals
نویسنده
چکیده
Using standard analysis only, we present an extension •R of the real field containing nilpotent infinitesimals. On the one hand we want to present a very simple setting to formalize infinitesimal methods in Differential Geometry, Analysis and Physics. On the other hand we want to show that these infinitesimals are also useful in infinite dimensional Differential Geometry, e.g. to study spaces of mappings. We define a full embedding of the category Mann of finite dimensional Cn manifolds in a cartesian closed category. In it we have a functor •(−) which extends these spaces adding new infinitesimal points and with values in another full cartesian closed embedding of Mann. We present a first development of Differential Geometry using these infinitesimals. 1 The ring of standard infinitesimals 1.
منابع مشابه
Infinitesimal Differential Geometry
Using standard analysis only, we present an extension •R of the real field containing nilpotent infinitesimals. On the one hand we want to present a very simple setting to formalize infinitesimal methods in Differential Geometry, Analysis and Physics. On the other hand we want to show that these infinitesimals may be also useful in infinite dimensional Differential Geometry, e.g. to study space...
متن کاملThe Fermat Functors
In this paper, we use some basic quasi-topos theory to study two functors: one adding infinitesimals of Fermat reals to diffeological spaces (which generalize smooth manifolds including singular spaces and infinite-dimensional spaces), and the other deleting infinitesimals on Fermat spaces. We study the properties of these functors, and calculate some examples. These serve as fundamentals for d...
متن کاملD ec 2 00 6 The Lie Algebra of the Group of Bisections ⊳ A Chapter in Synthetic Differential Geometry of Groupoids ⊲
Groupoids provide a more appropriate framework for differential geometry than principal bundles. Synthetic differential geometry is the avantgarde branch of differential geometry, in which nilpotent infinitesimals are available in abundance. The principal objective in this paper is to show within our favorite framework of synthetic differential geometry that the tangent space of the group of bi...
متن کاملAffine Connections, and Midpoint Formation
It is a striking fact that differential calculus exists not only in analysis (based on the real numbers R), but also in algebraic geometry, where no limit processes are available. In algebraic geometry, one rather uses the idea of nilpotent elements in the “affine line” R; they act as infinitesimals. (Recall that an element x in a ring R is called nilpotent if xk = 0 for suitable non-negative i...
متن کاملAffine connections, midpoint formation, and point reflection
It is a striking fact that differential calculus exists not only in analysis (based on the real numbers R and limits therein), but also in algebraic geometry, where no limit processes are available. In algebraic geometry, one rather uses the idea of nilpotent elements in the “affine line” R; they act as infinitesimals. (Recall that an element x in a ring R is called nilpotent if xk = 0 for suit...
متن کامل